Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38497988

RESUMO

BACKGROUND: Antimicrobial resistance in Neisseria gonorrhoeae is threatening the gonorrhoea treatment, and optimizations of the current ceftriaxone-treatment regimens are crucial. We evaluated the pharmacodynamics of ceftriaxone single-dose therapy (0.125-1 g) against ceftriaxone-susceptible and ceftriaxone-resistant gonococcal strains, based on EUCAST ceftriaxone-resistance breakpoint (MIC > 0.125 mg/L), in our hollow fibre infection model (HFIM) for gonorrhoea. METHODS: Gonococcal strains examined were WHO F (ceftriaxone-susceptible, MIC < 0.002 mg/L), R (ceftriaxone-resistant, MIC = 0.5 mg/L), Z (ceftriaxone-resistant, MIC = 0.5 mg/L) and X (ceftriaxone-resistant, MIC = 2 mg/L). Dose-range HFIM 7 day experiments simulating ceftriaxone 0.125-1 g single-dose intramuscular regimens were conducted. RESULTS: Ceftriaxone 0.125-1 g single-dose treatments rapidly eradicated WHO F (wild-type ceftriaxone MIC). Ceftriaxone 0.5 and 1 g treatments, based on ceftriaxone human plasma pharmacokinetic parameters, eradicated most ceftriaxone-resistant gonococcal strains (WHO R and Z), but ceftriaxone 0.5 g failed to eradicate WHO X (high-level ceftriaxone resistance). When simulating oropharyngeal gonorrhoea, ceftriaxone 0.5 g failed to eradicate all the ceftriaxone-resistant strains, while ceftriaxone 1 g eradicated WHO R and Z (low-level ceftriaxone resistance) but failed to eradicate WHO X (high-level ceftriaxone resistance). No ceftriaxone-resistant mutants were selected using any ceftriaxone treatments. CONCLUSIONS: Ceftriaxone 1 g single-dose intramuscularly cure most of the anogenital and oropharyngeal gonorrhoea cases caused by the currently internationally spreading ceftriaxone-resistant gonococcal strains, which should be further confirmed clinically. A ceftriaxone 1 g dose (±azithromycin 2 g) should be recommended for first-line empiric gonorrhoea treatment. This will buy countries some time until novel antimicrobials are licensed. Using ceftriaxone 1 g gonorrhoea treatment, the EUCAST ceftriaxone-resistance breakpoint is too low.

2.
Antimicrob Agents Chemother ; 68(3): e0139423, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38289076

RESUMO

Amikacin is an FDA-approved aminoglycoside antibiotic that is commonly used. However, validated dosage regimens that achieve clinically relevant exposure profiles in mice are lacking. We aimed to design and validate humanized dosage regimens for amikacin in immune-competent murine bloodstream and lung infection models of Acinetobacter baumannii. Plasma and lung epithelial lining fluid (ELF) concentrations after single subcutaneous doses of 1.37, 13.7, and 137 mg/kg of body weight were simultaneously modeled via population pharmacokinetics. Then, humanized amikacin dosage regimens in mice were designed and prospectively validated to match the peak, area, trough, and range of plasma concentration profiles in critically ill patients (clinical dose: 25-30 mg/kg of body weight). The pharmacokinetics of amikacin were linear, with a clearance of 9.93 mL/h in both infection models after a single dose. However, the volume of distribution differed between models, resulting in an elimination half-life of 48 min for the bloodstream and 36 min for the lung model. The drug exposure in ELF was 72.7% compared to that in plasma. After multiple q6h dosing, clearance decreased by ~80% from the first (7.35 mL/h) to the last two dosing intervals (~1.50 mL/h) in the bloodstream model. Likewise, clearance decreased by 41% from 7.44 to 4.39 mL/h in the lung model. The humanized dosage regimens were 117 mg/kg of body weight/day in mice [administered in four fractions 6 h apart (q6h): 61.9%, 18.6%, 11.3%, and 8.21% of total dose] for the bloodstream and 96.7 mg/kg of body weight/day (given q6h as 65.1%, 16.9%, 10.5%, and 7.41%) for the lung model. These validated humanized dosage regimens and population pharmacokinetic models support translational studies with clinically relevant amikacin exposure profiles.


Assuntos
Amicacina , Pneumonia , Humanos , Animais , Camundongos , Amicacina/farmacocinética , Antibacterianos/farmacocinética , Pulmão , Pneumonia/tratamento farmacológico , Peso Corporal
3.
Front Pharmacol ; 14: 1291885, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38130409

RESUMO

Antimicrobial resistance in the sexually transmitted bacterium Neisseria gonorrhoeae is compromising the management and control of gonorrhea globally. Optimized use and enhanced stewardship of current antimicrobials and development of novel antimicrobials are imperative. The first in class zoliflodacin (spiropyrimidinetrione, DNA Gyrase B inhibitor) is a promising novel antimicrobial in late-stage clinical development for gonorrhea treatment, i.e., the phase III randomized controlled clinical trial (ClinicalTrials.gov Identifier: NCT03959527) was recently finalized, and zoliflodacin showed non-inferiority compared to the recommended ceftriaxone plus azithromycin dual therapy. Doxycycline, the first-line treatment for chlamydia and empiric treatment for non-gonococcal urethritis, will be frequently given together with zoliflodacin because gonorrhea and chlamydia coinfections are common. In a previous static in vitro study, it was indicated that doxycycline/tetracycline inhibited the gonococcal killing of zoliflodacin in 6-h time-kill curve analysis. In this study, our dynamic in vitro hollow-fiber infection model (HFIM) was used to investigate combination therapies with zoliflodacin and doxycycline. Dose-range experiments using the three gonococcal strains WHO F (susceptible to relevant therapeutic antimicrobials), WHO X (extensively drug-resistant, including ceftriaxone-resistant; zoliflodacin-susceptible), and SE600/18 (zoliflodacin-susceptible strain with GyrB S467N substitution) were conducted simulating combination therapy with a single oral dose of zoliflodacin 0.5-4 g combined with a doxycycline daily oral dose of 200 mg administered as 100 mg twice a day, for 7 days (standard dose for chlamydia treatment). Comparing combination therapy of zoliflodacin (0.5-4 g single dose) plus doxycycline (200 mg divided into 100 mg twice a day orally, for 7 days) to zoliflodacin monotherapy (0.5-4 g single dose) showed that combination therapy was slightly more effective than monotherapy in the killing of N. gonorrhoeae and suppressing emergence of zoliflodacin resistance. Accordingly, WHO F was eradicated by only 0.5 g single dose of zoliflodacin in combination with doxycycline, and WHO X and SE600/18 were both eradicated by a 2 g single dose of zoliflodacin in combination with doxycycline; no zoliflodacin-resistant populations occurred during the 7-day experiment when using this zoliflodacin dose. When using suboptimal (0.5-1 g) zoliflodacin doses together with doxycycline, gonococcal mutants with increased zoliflodacin MICs, due to GyrB D429N and the novel GyrB T472P, emerged, but both the mutants had an impaired biofitness. The present study shows the high efficacy of zoliflodacin plus doxycycline combination therapy using a dynamic HFIM that more accurately and comprehensively simulate gonococcal infection and their treatment, i.e., compared to static in vitro models, such as short-time checkerboard experiments or time-kill curve analysis. Based on our dynamic in vitro HFIM work, zoliflodacin plus doxycycline for the treatment of both gonorrhea and chlamydia can be an effective combination.

4.
Antimicrob Agents Chemother ; 67(5): e0019723, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37022153

RESUMO

Polymyxin B is a "last-line-of-defense" antibiotic approved in the 1960s. However, the population pharmacokinetics (PK) of its four main components has not been reported in infected mice. We aimed to determine the PK of polymyxin B1, B1-Ile, B2, and B3 in a murine bloodstream and lung infection model of Acinetobacter baumannii and develop humanized dosage regimens. A linear 1-compartment model, plus an epithelial lining fluid (ELF) compartment for the lung model, best described the PK. Clearance and volume of distribution were similar among the four components. The bioavailability fractions were 72.6% for polymyxin B1, 12.0% for B1-Ile, 11.5% for B2, and 3.81% for B3 for the lung model and were similar for the bloodstream model. While the volume of distribution was comparable between both models (17.3 mL for the lung and ~27 mL for the bloodstream model), clearance was considerably smaller for the lung (2.85 mL/h) compared to that of the bloodstream model (5.59 mL/h). The total drug exposure (AUC) in ELF was high due to the saturable binding of polymyxin B presumably to bacterial lipopolysaccharides. However, the modeled unbound AUC in ELF was ~16.7% compared to the total drug AUC in plasma. The long elimination half-life (~4 h) of polymyxin B enabled humanized dosage regimens with every 12 h dosing in mice. Daily doses that optimally matched the range of drug concentrations observed in patients were 21 mg/kg for the bloodstream and 13 mg/kg for the lung model. These dosage regimens and population PK models support translational studies for polymyxin B at clinically relevant drug exposures.


Assuntos
Antibacterianos , Polimixina B , Camundongos , Animais , Polimixina B/farmacocinética , Antibacterianos/farmacocinética , Pulmão/microbiologia , Disponibilidade Biológica , Plasma
5.
Front Pharmacol ; 13: 1035841, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36452226

RESUMO

The emergence and spread of antimicrobial resistance in Neisseria gonorrhoeae is seriously threatening the treatment and control of gonorrhea globally. Novel treatment options are essential, coupled with appropriate methods to pharmacodynamically examine the efficacy and resistance emergence of these novel drugs. Herein, we used our dynamic in vitro hollow fiber infection model (HFIM) to evaluate protein-unbound lefamulin, a semisynthetic pleuromutilin, against N. gonorrhoeae. Dose-range and dose-fractionation experiments with N. gonorrhoeae reference strains: WHO F (susceptible to all relevant antimicrobials), WHO X (extensively drug-resistant, including ceftriaxone resistance), and WHO V (high-level azithromycin resistant, and highest gonococcal MIC of lefamulin (2 mg/l) reported), were performed to examine lefamulin gonococcal killing and resistance development during treatment. The dose-range experiments, simulating a single oral dose of lefamulin based on human plasma concentrations, indicated that ≥1.2 g, ≥2.8 g, and ≥9.6 g of lefamulin were required to eradicate WHO F, X, and V, respectively. Dose-fractionation experiments, based on human lefamulin plasma concentrations, showed that WHO X was eradicated with ≥2.8 g per day when administered as q12 h (1.4 g twice a day) and with ≥3.6 g per day when administered as q8 h (1.2 g thrice a day), both for 7 days. However, when simulating the treatment with 5-10 times higher concentrations of free lefamulin in relevant gonorrhea tissues (based on urogenital tissues in a rat model), 600 mg every 12 h for 5 days (approved oral treatment for community-acquired bacterial pneumonia) eradicated all strains, and no lefamulin resistance emerged in the successful treatment arms. In many arms failing single or multiple dose treatments for WHO X, lefamulin-resistant mutants (MIC = 2 mg/l), containing an A132V amino acid substitution in ribosomal protein L3, were selected. Nevertheless, these lefamulin-resistant mutants demonstrated an impaired biofitness. In conclusion, a clinical study is warranted to elucidate the clinical potential of lefamulin as a treatment option for uncomplicated gonorrhea (as well as several other bacterial STIs).

6.
Antimicrob Agents Chemother ; 66(10): e0069522, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36165631

RESUMO

Mycobacterium tuberculosis (Mtb) exists in various metabolic states, including a nonreplicating persister (NRP) phenotype which may affect response to therapy. We have adopted a model-informed strategy to accelerate discovery of effective Mtb treatment regimens and previously found pretomanid (PMD), moxifloxacin (MXF), and bedaquiline (BDQ) to readily kill logarithmic- and acid-phase Mtb. Here, we studied multiple concentrations of each drug in flask-based, time-kill studies against NRP Mtb in single-, two- and three-drug combinations, including the active M2 metabolite of BDQ. We used nonparametric population algorithms in the Pmetrics package for R to model the data and to simulate the 95% confidence interval of bacterial population decline due to the two-drug combination regimen of PMD + MXF and compared this to observed declines with three-drug regimens. PMD + MXF at concentrations equivalent to average or peak human concentrations effectively eradicated Mtb. Unlike other states for Mtb, we observed no sustained emergence of less susceptible isolates for any regimen. The addition of BDQ as a third drug significantly (P < 0.05) shortened time to total bacterial suppression by 3 days compared to the two-drug regimen, similar to our findings for Mtb in logarithmic or acid growth phases.


Assuntos
Mycobacterium tuberculosis , Animais , Humanos , Antituberculosos/farmacologia , Moxifloxacina/farmacologia , Combinação de Medicamentos , Fenótipo
7.
Front Pharmacol ; 13: 874176, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35496288

RESUMO

Novel antimicrobials for effective treatment of uncomplicated gonorrhea are essential, and the first-in-class, oral spiropyrimidinetrione DNA gyrase B inhibitor zoliflodacin appears promising. Using our newly developed Hollow Fiber Infection Model (HFIM), the pharmacodynamics of zoliflodacin was examined. A clinical zoliflodacin-susceptible N. gonorrhoeae strain, SE600/18 (harbouring a GyrB S467N amino acid substitution; MIC = 0.25 mg/L), and SE600/18-D429N (zoliflodacin-resistant mutant with a second GyrB substitution, D429N, selected in the HFIM experiments; zoliflodacin MIC = 2 mg/L), were examined. Dose-range experiments, simulating zoliflodacin single oral dose regimens of 0.5, 1, 2, 3, and 4 g, were performed for SE600/18. For SE600/18-D429N, dose-range experiments, simulating zoliflodacin single oral 2, 3, 4, and 6 g doses, and zoliflodacin oral dose-fractionation experiments with 4, 6, and 8 g administered as q12 h were performed. Both strains grew well in the untreated HFIM growth control arms and mostly maintained growth at 1010-1011 CFU/ml for 7 days. Zoliflodacin 3 and 4 g single dose oral regimens successfully eradicated SE600/18 and no growth was recovered during the 7-days experiments. However, the single oral 0.5, 1, and 2 g doses failed to eradicate SE600/18, and zoliflodacin-resistant populations with a GyrB D429N substitution were selected with all these doses. The zoliflodacin-resistant SE600/18-D429N mutant was not eradicated with any examined treatment regimen. However, this in vitro-selected zoliflodacin-resistant mutant was substantially less fit compared to the zoliflodacin-susceptible SE600/18 parent strain. In conclusion, the rare clinical gonococcal strains with GyrB S467N substitution are predisposed to develop zoliflodacin resistance and may require treatment with zoliflodacin ≥3 g. Future development may need to consider the inclusion of diagnostics directed at identifying strains resistant or predisposed to resistance development at a population level and to strengthen surveillance (phenotypically and genetically), and possibly also at the patient level to guide treatment.

8.
Int J Antimicrob Agents ; 59(2): 106509, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34958863

RESUMO

In recent years, clofazimine (CFZ) has been regaining prominence for the treatment of tuberculosis. However, it shows limited efficacy as a single drug and optimal combination partners have not been identified. Therefore, the objective of our analysis was to evaluate the efficacy of CFZ-containing two-drug regimens with pretomanid (PMD), bedaquiline (BDQ) or linezolid (LZD) by: (i) determining their pharmacodynamic (PD) mode of interaction against Mycobacterium tuberculosis (Mtb) strain H37Rv in log- phase and acid-phase metabolic states, and against Mtb strain 18b in a non-replicating persister (NRP) metabolic state; (ii) predicting bacterial cell kill of the drugs alone and in combination; and (iii) evaluating the relationship between the interaction mode and the extent of bacterial cell kill. The results of our Greco universal response surface analysis showed that CFZ was at least additive with a clear trend towards synergy when combined with PMD, BDQ and LZD against Mtb in all explored metabolic states under in vitro checkerboard assay conditions. The results further showed that all two-drug combination regimens exerted greater bacterial kill than any of the drugs alone. CFZ alone showed the least antimicrobial efficacy amongst the evaluated drugs, and there was a lack of correlation between the mode of interaction and the extent of bacterial kill. However, we may underestimate the effect of CFZ in this screening approach owing to limited in vitro study duration and neglect of target site accumulation. Clofazimine; Pretomanid; Bedaquiline; Linezolid; Combination chemotherapy; Mycobacterium tuberculosis.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Clofazimina/farmacologia , Clofazimina/uso terapêutico , Diarilquinolinas/farmacologia , Diarilquinolinas/uso terapêutico , Humanos , Linezolida/farmacologia , Linezolida/uso terapêutico , Testes de Sensibilidade Microbiana , Nitroimidazóis , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
9.
Antimicrob Agents Chemother ; 65(10): e0069321, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34339275

RESUMO

Mycobacterium tuberculosis metabolic state affects the response to therapy. Quantifying the effect of antimicrobials in the acid and nonreplicating metabolic phases of M. tuberculosis growth will help to optimize therapy for tuberculosis. As a brute-force approach to all possible drug combinations against M. tuberculosis in all different metabolic states is impossible, we have adopted a model-informed strategy to accelerate the discovery. Using multiple concentrations of each drug in time-kill studies, we examined single drugs and two- and three-drug combinations of pretomanid, moxifloxacin, and bedaquiline plus its active metabolite against M. tuberculosis in its acid-phase metabolic state. We used a nonparametric modeling approach to generate full distributions of interaction terms between pretomanid and moxifloxacin for susceptible and less susceptible populations. From the model, we could predict the 95% confidence interval of the simulated total bacterial population decline due to the 2-drug combination regimen of pretomanid and moxifloxacin and compare this to observed declines with 3-drug regimens. We found that the combination of pretomanid and moxifloxacin at concentrations equivalent to average or peak human concentrations effectively eradicated M. tuberculosis in its acid growth phase and prevented emergence of less susceptible isolates. The addition of bedaquiline as a third drug shortened time to total and less susceptible bacterial suppression by 8 days compared to the 2-drug regimen, which was significantly faster than the 2-drug kill.


Assuntos
Mycobacterium tuberculosis , Animais , Antituberculosos/uso terapêutico , Combinação de Medicamentos , Quimioterapia Combinada , Humanos , Moxifloxacina
10.
Front Pharmacol ; 12: 682135, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093206

RESUMO

Antimicrobial resistance in Neisseria gonorrhoeae is threatening the treatment and control of gonorrhea globally, and new treatment options are imperative. Utilizing our dynamic in vitro hollow fiber infection model (HFIM), we examined the pharmacodynamics of the first-in-class spiropyrimidinetrione (DNA gyrase B inhibitors), zoliflodacin, against the N. gonorrhoeae reference strains World Health Organization F (susceptible to all relevant antimicrobials) and WHO X (extensively drug resistant, including resistance to ceftriaxone) over 7 days. Dose-range experiments with both strains, simulating zoliflodacin single oral dose regimens of 0.5-8 g, and dose-fractionation experiments with WHO X, simulating zoliflodacin oral dose therapy with 1-4 g administered as q12 h and q8 h for 24 h, were performed. A kill-rate constant that reflected a rapid bacterial kill during the first 6.5 h for both strains and all zoliflodacin doses was identified. In the dose-range experiments, the zoliflodacin 2-8 g single-dose treatments successfully eradicated both WHO strains, and resistance to zoliflodacin was not observed. However, zoliflodacin as a single 0.5 g dose failed to eradicate both WHO strains, and a 1 g single dose failed to eradicate WHO X in one of two experiments. The zoliflodacin 1 g/day regimen also failed to eradicate WHO X when administered as two and three divided doses given at q12 h and q8 h in the dose-fractionation studies, respectively. All failed regimens selected for zoliflodacin-resistant mutants. In conclusion, these data demonstrate that zoliflodacin should be administered at >2 g as a single oral dose to provide effective killing and resistance suppression of N. gonorrhoeae. Future studies providing pharmacokinetic data for zoliflodacin (and other gonorrhea therapeutic antimicrobials) in urogenital and extragenital infection sites, particularly in the pharynx, and evaluation of gonococcal strains with different gyrB mutations would be important.

11.
Antimicrob Agents Chemother ; 65(8): e0185320, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34097487

RESUMO

Dose range studies for polymyxin B (PMB) regimens of 0.75 to 12 mg/kg given every 12 h (q12h) were evaluated for bacterial killing and resistance prevention against an AmpC-overexpressing Pseudomonas aeruginosa and a blaKPC-3-harboring Klebsiella pneumoniae in 10-day in vitro hollow-fiber models. An exposure-response was observed. But all regimens failed due to regrowth. Lower-dose regimens amplified isolates that expressed transient, lower-level adaptive resistance to PMB (MICs ≤ 4 mg/liter). Higher PMB dosages amplified isolates that expressed this resistance mechanism, a higher-MIC "moderately stable" adaptive resistance, and a higher-MIC stable resistance to PMB. Failure of the highest dose regimens was solely due to subpopulations that expressed the two higher-level resistances. Total and bioactive PMB concentrations in broth declined below targeted PK profiles within hours of treatment initiation and prior to bacterial regrowth. With treatment failure, the total PMB measured in bacteria was substantially higher than in broth. But the bioactive PMB in broth and bacteria were low to nondetectable. Together, these findings suggest a sequence of events for treatment failure of the clinical regimen. First, PMB concentrations in broth are diluted as PMB binds to bacteria, resulting in total and bioactive PMB in broth that is lower than targeted. Bacterial regrowth and treatment failure follow, with emergence of subpopulations that express transient lower-level adaptive resistance to PMB and possibly higher-level adaptive and stable resistances. Higher-dose PMB regimens can prevent the emergence of transient lower-level adaptive resistance, but they do not prevent treatment failure due to isolates that express higher-level resistance mechanisms.


Assuntos
Antibacterianos , Polimixina B , Antibacterianos/farmacologia , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Polimixina B/farmacologia , Pseudomonas aeruginosa/genética
12.
Artigo em Inglês | MEDLINE | ID: mdl-33782013

RESUMO

Ceftazidime (CAZ)-avibactam (AVI) is a ß-lactam/ß-lactamase inhibitor combination with activity against type A and type C ß-lactamases. Resistance emergence has been seen, with multiple mechanisms accounting for the resistance. We performed four experiments in the dynamic hollow-fiber infection model, delineating the linkage between drug exposure and both the rate of bacterial kill and resistance emergence by all mechanisms. The Pseudomonas aeruginosa isolate had MICs of 1.0 mg/liter (CAZ) and 4 mg/liter (AVI). We demonstrated that the time at ≥4.0 mg/liter AVI was linked to the rate of bacterial kill. Linkage to resistance emergence/suppression was more complex. In one experiment in which CAZ and AVI administration was intermittent and continuous, respectively, and in which AVI was given in unitary steps from 1 to 8 mg/liter, AVI at up to 3 mg/liter allowed resistance emergence, whereas higher values did not. The threshold value was 3.72 mg/liter as a continuous infusion to counterselect resistance (AVI area under the concentration-time curve [AUC] of 89.3 mg · h/liter). The mechanism involved a 7-amino-acid deletion in the Ω-loop region of the Pseudomonas-derived cephalosporinase (PDC) ß-lactamase. Further experiments in which CAZ and AVI were both administered intermittently with regimens above and below the AUC of 89.3 mg · h/liter resulted in resistance in the lower-exposure groups. Deletion mutants were not identified. Finally, in an experiment in which paired exposures as both continuous and intermittent infusions were performed, the lower value of 25 mg · h/liter by both profiles allowed selection of deletion mutants. Of the five instances in which these mutants were recovered, four had a continuous-infusion profile. Both continuous-infusion administration and low AVI AUC exposures have a role in selection of this mutation.


Assuntos
Ceftazidima , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos/farmacologia , Ceftazidima/farmacologia , Cefalosporinase , Combinação de Medicamentos , Testes de Sensibilidade Microbiana , Pseudomonas , Pseudomonas aeruginosa/genética
13.
Clin Pharmacol Ther ; 109(4): 1000-1020, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33576025

RESUMO

Multidrug-resistant bacteria are causing a serious global health crisis. A dramatic decline in antibiotic discovery and development investment by pharmaceutical industry over the last decades has slowed the adoption of new technologies. It is imperative that we create new mechanistic insights based on latest technologies, and use translational strategies to optimize patient therapy. Although drug development has relied on minimal inhibitory concentration testing and established in vitro and mouse infection models, the limited understanding of outer membrane permeability in Gram-negative bacteria presents major challenges. Our team has developed a platform using the latest technologies to characterize target site penetration and receptor binding in intact bacteria that inform translational modeling and guide new discovery. Enhanced assays can quantify the outer membrane permeability of ß-lactam antibiotics and ß-lactamase inhibitors using multiplex liquid chromatography tandem mass spectrometry. While ß-lactam antibiotics are known to bind to multiple different penicillin-binding proteins (PBPs), their binding profiles are almost always studied in lysed bacteria. Novel assays for PBP binding in the periplasm of intact bacteria were developed and proteins identified via proteomics. To characterize bacterial morphology changes in response to PBP binding, high-throughput flow cytometry and time-lapse confocal microscopy with fluorescent probes provide unprecedented mechanistic insights. Moreover, novel assays to quantify cytosolic receptor binding and intracellular drug concentrations inform target site occupancy. These mechanistic data are integrated by quantitative and systems pharmacology modeling to maximize bacterial killing and minimize resistance in in vitro and mouse infection models. This translational approach holds promise to identify antibiotic combination dosing strategies for patients with serious infections.


Assuntos
Técnicas Bacteriológicas/métodos , Descoberta de Drogas/métodos , Farmacorresistência Bacteriana Múltipla/fisiologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/fisiologia , Animais , Membrana Celular/fisiologia , Modelos Animais de Doenças , Humanos , Modelos Teóricos , Proteínas de Ligação às Penicilinas/fisiologia , beta-Lactamas/farmacologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-33468465

RESUMO

The repurposed agent moxifloxacin has become an important addition to the physician's armamentarium for the therapy of Mycobacterium tuberculosis When a drug is administered, we need to have metrics for success. As for most antimicrobial chemotherapy, we contend that for Mycobacterium tuberculosis therapy, these metrics should be a decline in the susceptible bacterial burden and the suppression of amplification of less-susceptible populations. To achieve optimal outcomes relative to these metrics, a dose and schedule of administration need to be chosen. For large populations of patients, there are true between-patient differences in important pharmacokinetic parameters. These distributions of parameter values may have an impact on these metrics, depending on what measure of drug exposure drives the metrics. To optimize dose and schedule choice of moxifloxacin, we performed a dose fractionation experiment in the hollow fiber infection model. We examined 12-, 24-, and 48-h dosing intervals with doses of 200, 400, and 800 mg for each interval, respectively. Within each interval, we had an arm where half-lives of 12, 8, and 4 h were simulated. We attempted to keep the average concentration (Cavg) or area under the concentration-time curve (AUC) constant across arms. We found that susceptible bacterial load decline was linked to Cavg, as we had indicated previously. Resistance suppression, a nonmonotonic function, had minimum concentration (Cmin) as the linked index. The 48-h interval with the 4-h half-life had the largest less-susceptible population. Balancing bacterial kill, resistance suppression, toxicity (linked to peak concentration [Cpeak]), and adherence, we conclude that the dose of 400 mg daily is optimal for moxifloxacin.


Assuntos
Antituberculosos , Tuberculose , Antituberculosos/uso terapêutico , Área Sob a Curva , Fluoroquinolonas , Meia-Vida , Humanos , Testes de Sensibilidade Microbiana , Moxifloxacina , Tuberculose/tratamento farmacológico
15.
Artigo em Inglês | MEDLINE | ID: mdl-33199386

RESUMO

The Mycobacterium tuberculosis drug discovery effort has generated a substantial number of new/repurposed drugs for therapy for this pathogen. The arrival of these drugs is welcome, but another layer of difficulty has emerged. Single agent therapy is insufficient for patients with late-stage tuberculosis because of resistance emergence. To achieve our therapeutic ends, it is requisite to identify optimal combination regimens. These regimens go through a lengthy and expensive evaluative process. If we have a modest group of 6 to 8 new or repurposed agents, this translates into 15 to 28 possible 2-drug combinations. There is neither time nor resources to give an extensive evaluation for all combinations. We sought a screening procedure that would identify combinations that had a high likelihood of achieving good bacterial burden decline. We examined pretomanid, moxifloxacin, linezolid, and bedaquiline in log-phase growth, acid-phase growth, and nonreplicative persister (NRP) phase in the Greco interaction model. We employed the interaction term α and the calculated bacterial burden decline as metrics to rank different regimens in different metabolic states. No relationship was found between α and bacterial kill. We chose bacterial kill as the prime metric. The combination of pretomanid plus moxifloxacin emerged as the clear frontrunner, as the largest bacterial declines were seen in log phase and acid phase with this regimen and it was second best in NRP phase. Bedaquiline also produced good kill. This screening process may identify optimal combinations that can be further evaluated in both the hollow-fiber infection model and in animal models of Mycobacterium tuberculosis infection.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Combinação de Medicamentos , Quimioterapia Combinada , Humanos , Tuberculose/tratamento farmacológico
16.
Artigo em Inglês | MEDLINE | ID: mdl-33106266

RESUMO

Mycobacterium abscessus causes serious infections that often require over 18 months of antibiotic combination therapy. There is no standard regimen for the treatment of M. abscessus infections, and the multitude of combinations that have been used clinically have had low success rates and high rates of toxicities. With ß-lactam antibiotics being safe, double ß-lactam and ß-lactam/ß-lactamase inhibitor combinations are of interest for improving the treatment of M. abscessus infections and minimizing toxicity. However, a mechanistic approach for building these combinations is lacking since little is known about which penicillin-binding protein (PBP) target receptors are inactivated by different ß-lactams in M. abscessus We determined the preferred PBP targets of 13 ß-lactams and 2 ß-lactamase inhibitors in two M. abscessus strains and identified PBP sequences by proteomics. The Bocillin FL binding assay was used to determine the ß-lactam concentrations that half-maximally inhibited Bocillin binding (50% inhibitory concentrations [IC50s]). Principal component analysis identified four clusters of PBP occupancy patterns. Carbapenems inactivated all PBPs at low concentrations (0.016 to 0.5 mg/liter) (cluster 1). Cephalosporins (cluster 2) inactivated PonA2, PonA1, and PbpA at low (0.031 to 1 mg/liter) (ceftriaxone and cefotaxime) or intermediate (0.35 to 16 mg/liter) (ceftazidime and cefoxitin) concentrations. Sulbactam, aztreonam, carumonam, mecillinam, and avibactam (cluster 3) inactivated the same PBPs as cephalosporins but required higher concentrations. Other penicillins (cluster 4) specifically targeted PbpA at 2 to 16 mg/liter. Carbapenems, ceftriaxone, and cefotaxime were the most promising ß-lactams since they inactivated most or all PBPs at clinically relevant concentrations. These first PBP occupancy patterns in M. abscessus provide a mechanistic foundation for selecting and optimizing safe and effective combination therapies with ß-lactams.


Assuntos
Mycobacterium abscessus , Inibidores de beta-Lactamases , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Proteínas de Ligação às Penicilinas/genética , Penicilinas , Inibidores de beta-Lactamases/farmacologia , beta-Lactamas/farmacologia
17.
Antimicrob Agents Chemother ; 64(12)2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-32958720

RESUMO

Preclinical animal models of infection are employed to develop new agents but also to screen among molecules to rank them. There are often major differences between human pharmacokinetic (PK) profiles and those developed by animal models of infection, and these may lead to substantial differences in efficacy relative to that seen in humans. Linezolid is a repurposed agent employed to great effect for therapy of Mycobacterium tuberculosis In this study, we used the hollow-fiber infection model (HFIM) to evaluate the impact of different pharmacokinetic profiles of mice and nonhuman primates (NHP) versus humans on bacterial cell kill as well as resistance suppression. We examined both plasma and epithelial lining fluid (ELF) profiles. We examined simulated exposures equivalent to 600 mg and 900 mg daily of linezolid in humans. For both plasma and ELF exposures, the murine PK profile provided estimates of effect that were biased low relative to human and NHP PK profiles. Mathematical modeling identified a linkage between minimum concentrations (Cmin) and bacterial kill and peak concentrations (Cpeak) and resistance suppression, with the latter being supported by a prospective validation study. Finding new agents with novel mechanisms of action against M. tuberculosis is difficult. It would be a tragedy to discard a new agent because of a biased estimate of effect in a preclinical animal system. The HFIM provides a system to benchmark evaluation of new compounds in preclinical animal model systems against human PK effects (species scale-up estimates of PK), to safeguard against unwarranted rejection of promising new agents.


Assuntos
Mycobacterium tuberculosis , Preparações Farmacêuticas , Tuberculose , Animais , Antituberculosos/farmacologia , Camundongos , Modelos Animais , Estudos Prospectivos
18.
Antimicrob Agents Chemother ; 64(11)2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32900682

RESUMO

Multidrug therapy is often required. Examples include antiviral therapy, nosocomial infections, and, most commonly, anti-Mycobacterium tuberculosis therapy. Our laboratory previously identified a mathematical approach to identify 2-drug regimens with a synergistic or additive interaction using a full factorial study design. Our objective here was to generate a method to identify an optimal 3-drug therapy. We studied M. tuberculosis isolate H37Rv in log-phase growth in flasks. Pretomanid and moxifloxacin were chosen as the base 2-drug regimen. Bedaquiline (plus M2 metabolite) was chosen as the third drug for evaluation. Total bacterial burden and bacterial burden less-susceptible to study drugs were enumerated. A large mathematical model was fit to all the data. This allowed extension to evaluation of the 3-drug regimen by employing a Monte Carlo simulation. Pretomanid plus moxifloxacin demonstrated excellent bacterial kill and suppressed amplification of less-susceptible pathogens. Total bacterial burden was driven to extinction in 3 weeks in 6 of 9 combination therapy evaluations. Only the lowest pretomanid/moxifloxacin exposures in combination did not extinguish the bacterial burden. No combination regimen allowed resistance amplification. Generation of 95% credible intervals about estimates of the interaction parameters α (αs, αr-p, and αr-m) by bootstrapping showed the interaction was near synergistic. The addition of bedaquiline/M2 metabolite was evaluated by forming a 95% confidence interval regarding the decline in bacterial burden. The addition of bedaquiline/M2 metabolite shortened the time to eradication by 1 week and was significantly different. A model-based system approach to evaluating combinations of 3 agents shows promise to rapidly identify the most promising combinations that can then be trialed.


Assuntos
Mycobacterium tuberculosis , Preparações Farmacêuticas , Antituberculosos/uso terapêutico , Quimioterapia Combinada , Hansenostáticos
19.
Eur J Pharm Sci ; 151: 105421, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32531349

RESUMO

Non-human primates (NHP) are thought to be a good preclinical animal model for tuberculosis because they develop disease characteristics that are similar to humans. The objective of the current study was to determine if NHPs can also be used to reliably predict the exposure of tedizolid, sutezolid, and its biologically active metabolite sutezolid-M1 in humans. The prodrug tedizolid phosphate and sutezolid were administered orally to NHPs either once or twice daily for up to eight days. The active moieties, tedizolid, and sutezolid showed linear pharmacokinetics and respective concentration-time profiles could be described by one-compartment body models with first-order elimination. One additional metabolite compartment with first-order elimination was found appropriate to capture the pharmacokinetics of sutezolid-M1. Once allometrically scaled to humans with a fixed exponent of 0.75 for apparent clearance and 1 for apparent volume of distribution, the AUCs of tedizolid and sutezolid were predicted reasonably well, whereas Cmax was under-predicted for sutezolid. Both NHP and humanized concentration-time profiles will now be used in vitro hollow-fiber pharmacodynamic experiments to determine if differences in drug exposures result in differences in Mycobacterium tuberculosis kill and emergence of resistance.


Assuntos
Antibacterianos , Oxazóis , Animais , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana , Organofosfatos , Oxazolidinonas , Primatas , Tetrazóis
20.
mBio ; 11(1)2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32047131

RESUMO

Poor penetration through the outer membrane (OM) of Gram-negative bacteria is a major barrier of antibiotic development. While ß-lactam antibiotics are commonly used against Klebsiella pneumoniae and Enterobacter cloacae, there are limited data on OM permeability especially in K. pneumoniae Here, we developed a novel cassette assay, which can simultaneously quantify the OM permeability to five ß-lactams in carbapenem-resistant K. pneumoniae and E. cloacae Both clinical isolates harbored a blaKPC-2 and several other ß-lactamases. The OM permeability of each antibiotic was studied separately ("discrete assay") and simultaneously ("cassette assay") by determining the degradation of extracellular ß-lactam concentrations via multiplex liquid chromatography-tandem mass spectrometry analyses. Our K. pneumoniae isolate was polymyxin resistant, whereas the E. cloacae was polymyxin susceptible. Imipenem penetrated the OM at least 7-fold faster than meropenem for both isolates. Imipenem penetrated E. cloacae at least 258-fold faster and K. pneumoniae 150-fold faster compared to aztreonam, cefepime, and ceftazidime. For our ß-lactams, OM permeability was substantially higher in the E. cloacae compared to the K. pneumoniae isolate (except for aztreonam). This correlated with a higher OmpC porin production in E. cloacae, as determined by proteomics. The cassette and discrete assays showed comparable results, suggesting limited or no competition during influx through OM porins. This cassette assay allowed us, for the first time, to efficiently quantify the OM permeability of multiple ß-lactams in carbapenem-resistant K. pneumoniae and E. cloacae Characterizing the OM permeability presents a critical contribution to combating the antimicrobial resistance crisis and enables us to rationally optimize the use of ß-lactam antibiotics.IMPORTANCE Antimicrobial resistance is causing a global human health crisis and is affecting all antibiotic classes. While ß-lactams have been commonly used against susceptible isolates of Klebsiella pneumoniae and Enterobacter cloacae, carbapenem-resistant isolates are spreading worldwide and pose substantial clinical challenges. Rapid penetration of ß-lactams leads to high drug concentrations at their periplasmic target sites, allowing ß-lactams to more completely inactivate their target receptors. Despite this, there are limited tangible data on the permeability of ß-lactams through the outer membranes of many Gram-negative pathogens. This study presents a novel, cassette assay, which can simultaneously characterize the permeability of five ß-lactams in multidrug-resistant clinical isolates. We show that carbapenems, and especially imipenem, penetrate the outer membrane of K. pneumoniae and E. cloacae substantially faster than noncarbapenem ß-lactams. The ability to efficiently characterize the outer membrane permeability is critical to optimize the use of ß-lactams and combat carbapenem-resistant isolates.


Assuntos
Antibacterianos/farmacologia , Membrana Externa Bacteriana/efeitos dos fármacos , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Enterobacter cloacae/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , beta-Lactamas/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Carbapenêmicos/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Enterobacter cloacae/genética , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...